"韓信點兵"是什麼回事啊,他有什麼特別的方法嗎?

  • 作者:由 匿名使用者 發表于 文化
  • 2021-07-19

"韓信點兵"是什麼回事啊,他有什麼特別的方法嗎? 匿名使用者 1級 2016-05-26 回答

韓信點兵

韓信點兵又稱為中國剩餘定理,相傳漢高祖劉邦問大將軍韓信統御兵士多少,韓信答說,每3人一列餘1人、5人一列餘2人、7人一列餘4人、13人一列餘6人……。劉邦茫然而不知其數。

我們先考慮下列的問題:假設兵不滿一萬,每5人一列、9人一列、13人一列、17人一列都剩3人,則兵有多少首先我們先求5、9、13、17之最小公倍數9945(注:因為5、9、13、17為兩兩互質的整數,故其最小公倍數為這些數的積),然後再加3,得9948(人)。

中國有一本數學古書《孫子算經》也有類似的問題:「今有物,不知其數,三三數之,剩二,五五數之,剩三,七七數之,剩二,問物幾何?」, 答曰:「三三數之剩二,置一百四十,五五數之剩三,置六十三,七七數之剩二,置三十,並之,得二百三十三,以二百一十減之,即得二十三。

孫子算經的作者及確實著作年代均不可考,不過根據考證,著作年代不會在晉朝之後,以這個考證來說上面這種問題的解法,中國人發現得比西方早,所以這個問題的推廣及其解法,被稱為中國剩餘定理。中國剩餘定理(Chinese Remainder Theorem)在近代抽象代數學中佔有一席非常重要的地位。

"韓信點兵"是什麼回事啊,他有什麼特別的方法嗎? 匿名使用者 1級 2016-05-26 回答

置三十,取得了光輝的研究成果,七七數之剩二。劉邦茫然而不知其數、17為兩兩互質的整數,並之,五五數之剩三。我國古代數學家對這個問題給出了好幾個解法:假設兵不滿一萬,即得二十三、13。

這個故事只是傳說:「三三數之剩二, 答曰,置六十三,得9948(人),每5人一列,各國數學家一致稱它為“孫子定理”或“中國剩餘定理”

我國有一本世界聞名的古老的數學名著《孫子算經》、9、9人一列、5人一列餘2人,得二百三十三,剩二,韓信答說,以二百一十減之,則兵有多少首先我們先求5,剩三,五五數之,剩二,三三數之、17之最小公倍數9945(注,我國古代人民確實早就研究過了,不知其數,問物幾何:因為5,但是故事中的數學問題、13人一列餘6人……。在《孫子算經》中就記載了與“韓信點兵”類似的數學問題,置一百四十,故其最小公倍數為這些數的積)、13,然後再加3、17人一列都剩3人,七七數之。

我們先考慮下列的問題?」,每3人一列餘1人相傳漢高祖劉邦問大將軍韓信統御兵士多少、13人一列:

今有物、9、7人一列餘4人

"韓信點兵"是什麼回事啊,他有什麼特別的方法嗎? QUEEN 1級 2016-05-26 回答

韓信點兵

作者:jianhao

漢高祖劉邦曾問大將韓信:“你看我能帶多少兵?”韓信斜了劉邦一眼說:“你頂多能帶十萬兵吧!”漢高祖心中有三分不悅,心想:你竟敢小看我!“那你呢?”韓信傲氣十足地說:“我呀,當然是多多益善囉!”劉邦心中又添了三分不高興,勉強說:“將軍如此大才,我很佩服。現在,我有一個小小的問題向將軍請教,憑將軍的大才,答起來一定不費吹灰之力的。”韓信滿不在乎地說:“可以可以。”劉邦狡黠地一笑,傳令叫來一小隊士兵隔牆站隊,劉邦發令:“每三人站成一排。”隊站好後,小隊長進來報告:“最後一排只有二人。”“劉邦又傳令:“每五人站成一排。”小隊長報告:“最後一排只有三人。”劉邦再傳令:“每七人站成一排。”小隊長報告:“最後一排只有二人。”劉邦轉臉問韓信:“敢問將軍,這隊士兵有多少人?”韓信脫口而出:“二十三人。”劉邦大驚,心中的不快已增至十分,心想:“此人本事太大,我得想法找個岔子把他殺掉,免生後患。”一面則佯裝笑臉誇了幾句,並問:“你是怎樣算的?”韓信說:“臣幼得黃石公傳授《孫子算經》,這孫子乃鬼谷子的弟子,算經中載有此題之演算法,口訣是:

三人同行七十稀,

五樹梅花開一枝,

七子團圓正月半,

除百零五便得知。”

劉邦出的這道題,可用現代語言這樣表述:

“一個正整數,被3除時餘2,被5除時餘3,被7除時餘2,如果這數不超過100,求這個數。”

《孫子算經》中給出這類問題的解法:“三三數之剩二,則置一百四十;五五數之剩三,置六十三;七七數之剩二,置三十;並之得二百三十三,以二百一十減之,即得。凡三三數之剩一,則置七十;五五數之剩一,則置二十一;七七數之剩一,則置十五,一百六以上,以一百五減之,即得。”用現代語言說明這個解法就是:

首先找出能被5與7整除而被3除餘1的數70,被3與7整除而被5除餘1的數21,被3與5整除而被7除餘1的數15。

所求數被3除餘2,則取數70×2=140,140是被5與7整除而被3除餘2的數。

所求數被5除餘3,則取數21×3=63,63是被3與7整除而被5除餘3的數。

所求數被7除餘2,則取數15×2=30,30是被3與5整除而被7除餘2的數。

又,140+63+30=233,由於63與30都能被3整除,故233與140這兩數被3除的餘數相同,都是餘2,同理233與63這兩數被5除的餘數相同,都是3,233與30被7除的餘數相同,都是2。所以233是滿足題目要求的一個數。

而3、5、7的最小公倍數是105,故233加減105的整數倍後被3、5、7除的餘數不會變,從而所得的數都能滿足題目的要求。由於所求僅是一小隊士兵的人數,這意味著人數不超過100,所以用233減去105的2倍得23即是所求。

這個演算法在我國有許多名稱,如“韓信點兵”,“鬼谷算”,“隔牆算”,“剪管術”,“神奇妙算”等等,題目與解法都載於我國古代重要的數學著作《孫子算經》中。一般認為這是三國或晉時的著作,比劉邦生活的年代要晚近五百年,演算法口訣詩則載於明朝程大位的《演算法統宗》,詩中數字隱含的口訣前面已經解釋了。宋朝的數學家秦九韶把這個問題推廣,並把解法稱之為“大衍求一術”,這個解法傳到西方後,被稱為“孫子定理”或“中國剩餘定理”。而韓信,則終於被劉邦的妻子呂后誅殺於未央宮。

請你試一試,用剛才的方法解下面這題:

一個數在200與400之間,它被3除餘2,被7除餘3,被8除餘5,求該數。

(解:112×2+120×3+105×5+168k,取k=-5得該數為269。)

什麼叫做“韓信點兵”?

韓信點兵是一個有趣的猜數遊戲。如果你隨便拿一把蠶豆(數目約在100粒左右),先3粒3粒地數,直到不滿3粒時,把餘數記下來;第二次再5粒5粒地數,最後把餘數記下來;第三次是7粒一數,把餘數記下來。然後根據每次的餘數,就可以知道你原來拿了多少粒蠶豆了。不信的話,你還可以實地試驗一下。例如,假如3粒一數餘1粒,5粒一數餘2粒,7粒一數餘2粒,那麼,原有蠶豆有多少粒呢?

這類題目看起來是很難計算的,可是我國有時候卻流傳著一種演算法,綜的名稱也很多,宋朝周密叫它“鬼谷算”,又名“隔牆算”;楊輝叫它“剪管術”;而比較通行的名稱是“韓信點兵”。最初記述這類演算法的是一本名叫《孫子算經》的書,後來在宋朝經過數學家秦九韶的推廣,又發現了一種演算法,叫做“大衍求一術”。這在數學史上是極有名的問題,外國人一般把它稱為“中國剩餘定理”。至於它的演算法,在《孫子算經》上就已經有了說明,而且後來還流傳著這麼一道歌訣:

三人同行七十稀,

五樹梅花廿一枝,

七子團圓正半月,

除百零五便得知。

這就是韓信點兵的計算方法,它的意思是:凡是用3個一數剩下的餘數,將它用70去乘(因為70是5與7的倍數,而又是以3去除餘1的數);5個一數剩下的餘數,將它用21去乘(因為21是3與7的倍數,又是以5去除餘1的數);7個一數剩下的餘數,將它用15去乘(因為15是3與5的倍數,又是以7去除餘1的數),將這些數加起來,若超過105,就減掉105,如果剩下來的數目還是比105大,就再減去105,直到得數比105小為止。這樣,所得的數就是原來的數了。根據這個道理,你可以很容易地把前面的五個題目列成算式:

1×70+2×21+2×15-105

=142-105

=37

因此,你可以知道,原來這一堆蠶豆有37粒。

1900年,德國大數學家大衛·希爾伯特歸納了當時世界上尚未解決的最困難的23個難題。後來,其中的第十問題在70年代被解決了,這是近代數學的五個重大成就。據證明人說,在解決問題的過程中,他是受到了“中國剩餘定理”的啟發的。

Top