宇宙有多大,宇宙外面是什麼

  • 作者:由 匿名使用者 發表于 詩詞
  • 2022-05-02

宇宙有多大,宇宙外面是什麼新野旁觀者 2018-10-08

宇宙外面是什麼?宇宙到底有多大?相信很多人都曾經試圖找到這個問題的答案,事實上物理學家們研究宇宙已經很久了。宇宙之外是什麼樣子還是未知數。相信看完下面的內容,或許對於您找到答案有所幫助。

首先我們要知道什麼是宇宙,宇宙是萬物的總稱,是時間和空間的統一。宇宙是物質世界,不依賴於人的意志而客觀存在,並處於不斷運動和發展中,在時間上沒有開始沒有結束,在空間上沒有邊界沒有盡頭。宇宙是多樣又統一的;多樣在物質表現狀態的多樣性;統一在於其物質性。宇宙是由空間、時間、物質和能量,所構成的統一體。

宇宙起源是一個極其複雜的問題。 宇宙是物質世界,它處於不斷的運動和發展中。千百年來,科學家們一直在探尋宇宙是什麼時候、如何形成的。直到今天,許多科學家認為,宇宙是由大約137億年前發生的一次大爆炸形成的。宇宙內的所存物質和能量都聚集到了一起,並濃縮成很小的體積,溫度極高,密度極大,瞬間產生巨大壓力,之後發生了大爆炸,這次大爆炸的反應原理被物理學家們稱為量子物理。大爆炸使物質四散出去,宇宙空間不斷膨脹,溫度也相應下降,後來相繼出現在宇宙中的所有星系、恆星、行星乃至生命。

宇宙有多大,宇宙外面是什麼

哈勃體積之外

我們可以在某些方面肯定的說宇宙之外是更多的宇宙。天文學家認為太空是無限的,宇宙之外的空間也和可觀測到的宇宙一樣充滿了能量、星系等等存在。如果真的是這樣,那麼宇宙之外的存在些什麼變成了一個非常奇怪的問題。

在哈勃體積之外,你不僅僅會發現更多不重樣的行星——看見任何東西都有可能(小編:看到42)。沒錯,任何東西。如果你看的夠遠你會看見另一個宇宙的你,他今天早飯沒有吃雞蛋而是吃的燕麥粥,你會看見另一個不吃早飯的你,你會看見一個天沒亮就爬起來搶銀行的你。實際上,宇宙論者認為如果你觀測地足夠遠,你會進入另一個哈勃體積——一個完美復刻版的我們生活的宇宙。在10188米之外的另一個宇宙裡有一個和你完全相同的人做著和你完全相同的事情。聽上去不太可能,但是無限這個概念比無限本身還要更加無限。[page]

宇宙有多大,宇宙外面是什麼

暗流星系團

2008年天文學家發現宇宙中成團的物質好像正在以極高的速度朝著同一個方向運動,這個現象用可見宇宙中的任何引力模式都無法進行解釋。速度達到每小時2百萬英里(321。8萬公里)。2010年的新進觀測結果確認了這種現象——暗流。這種物質的運動過程挑戰了所有對大爆炸後宇宙整體物質分佈的預測。可能的原因之一:哈勃體積之外的巨大質量結構產生的引力對本宇宙的影響結果。這意味著在我們觀測範圍之外的無限宇宙中存在著不可確定的構造。這些構造可能以任何形態出現,有可能是一大塊物質和能量的結合體,其體量之大超乎人類想象,也有可能是其他宇宙來的奇怪彎曲漏斗狀引力。

宇宙有多大,宇宙外面是什麼

宇宙是無限多的泡泡

說到底哈勃體積之外的宇宙還是宇宙,只是我們看不到。這些地方和我們觀測到的宇宙遵循同樣的物理規律和各種常量。宇宙大爆炸後,宇宙就在不斷膨脹,膨脹中會導致太空中產生泡泡。每個泡泡裡面都是停止膨脹的宇宙,每個泡泡裡面都有各自的物理法則。這種理論認為宇宙無限,泡沫本身也是無限(你可以在某個無窮集合中挑一個無窮數,還是包含於這個無窮集合)。即便你能逃出泡泡的邊界,泡泡外的宇宙空間依然在膨脹,無論你以多塊的速度追趕你都無法探索到其它的泡泡。[page]

宇宙有多大,宇宙外面是什麼

黑洞產卵宇宙論

物理學家Lee Smolin提出過一種新的理論,他認為我們宇宙中的每個黑洞都會創造一個新的宇宙。而每一個新的宇宙的物理定律又和之前的宇宙有些許不同。Smolin提出了一種自然選擇的宇宙論,如果某些物理法則可更頻繁地生成黑洞,就能創造更多宇宙。同時沒有黑洞形成的宇宙只能等死。

宇宙有多大,宇宙外面是什麼

有許多平行宇宙

關於平行宇宙的理論就太多了,目前接受程度最高的幾種理論中,有一種是弦理論的進化版本:認為有幾層膜在其它維度震動。簡單的說這些漣漪一樣的在11維度震動的膜就是我們的宇宙之外的其它宇宙。漣漪運動效應可以幫助解釋已觀測宇宙的物質分佈。這種理論認為重力之所以特殊的原因是重力是從其它維度中的其它宇宙洩露到我們這個維度的這個宇宙的。(這也能解釋為什麼重力相較其它基本力如此微弱)。

宇宙有多大?

想要了解宇宙究竟有多大,請你試著將一枚硬幣放在你的面前。假設這枚小小的硬幣就是我們的太陽,那麼另一顆代表距離太陽最近的恆星:比鄰星的硬幣就應當放在大約563公里之外。對於生活在中國的讀者而言,比如上海的讀者,這第二枚硬幣幾乎要擺放到山東或安徽省境內,而對於一些小國的居民而言,這顆硬幣可能都已經放到外國去了。[page]

而這僅僅是太陽和距離它最近的一顆恆星而已。當你試圖模擬更大範圍內的宇宙空間時,就會麻煩的多了。比方說,相對於你的那顆硬幣太陽,銀河系的直徑將是大約1200萬公里,這相當於地月距離的30倍。正如你所看到的,宇宙的尺度是驚人的,幾乎沒有辦法用我們生活中所熟知的距離尺度加以衡量。

但這並不意味著人類丈量宇宙的夢想是遙不可及的。天文學家在長期的工作研究中已經找到一些行之有效的方法去測量宇宙的尺度。以下我們將向你呈現有關的內容:

1 宇宙的尺度

宇宙有多大,宇宙外面是什麼

宇宙的尺度我們並非居於宇宙的中心,但是我們確實居於可觀測宇宙的中心,這是一個直徑約為930億光年的球體

這個星球上沒有人知道宇宙究竟有多大。它或許是無限的,也或許它確實擁有某種邊界,也就是說如果你旅行的時間足夠長,你最終將回到你出發的地方,就像在地球上那樣,類似在一個球體的表面旅行。

科學家們對於宇宙具體的形狀和大小資料存在分歧,但是至少對於一點他們可以進行非常精確的計算,那就是我們可以看得多遠。真空中的光速是一個定值,那麼由於宇宙自誕生以來大約為137億年,這是否就意味著我們最遠只能看到137億光年遠的地方呢?

答案是錯誤的。有關這個宇宙的最奇特性質之一便是:它是不斷膨脹的。並且這種膨脹幾乎可以以任何速度進行——甚至超過光速。這就意味著我們所能觀測到的最遠的天體事實上遠比它們實際來的近。隨著時間流逝,由於宇宙的整體膨脹,所有的星系將離我們越來越遠,直到最終留給我們一個一片空寂的空間。

奇異的是,這樣的結果是我們的觀測能力事實上被“強化”了,事實上我們所能觀察到最遙遠的星系距離我們的距離達到了460億光年。我們並非居於宇宙的中心,但是我們確實居於可觀測宇宙的中心,這是一個直徑約為930億光年的球體。[page]

2 充斥著星系

宇宙有多大,宇宙外面是什麼

這張照片是美國宇航局哈勃空間望遠鏡獲得的最深邃的影像之一這是美國宇航局哈勃空間望遠鏡獲得的最深邃的影像之一

這張照片是美國宇航局哈勃空間望遠鏡獲得的最深邃的影像之一。科學家們讓哈勃望遠鏡對準天空中的一小塊區域進行長時間的曝光——長達數月,儘可能地捕獲每一個闇弱的光點。文中上圖是區域性的放大,完整的影象是下面這幅圖,其中包含有1萬個星系,從區域性放大圖中,你可以看到一些星系的細節。

完整的影象完整的影象

當你看著這些遙遠的星系,你可能沒有意識到自己正在遙望遙遠的過去,你所看到的這些星系都是它們在130億年前的樣子,那幾乎是時間的盡頭。如果你更喜歡空間的描述,那麼這些星系離開我們的距離是300億光年。

宇宙處於不斷的膨脹之中,但與此同時科學家們對於宇宙尺度的測量精度也在不斷提高。他們很快找到了一種絕佳的描述宇宙中遙遠天體距離的方法。由於宇宙在膨脹,在宇宙中傳播的光線的波長將被拉伸,就像橡皮筋被拉長一樣。光是一種電磁波,對於它而言,波長變長意味著向波譜中的紅光波段靠近。於是天文學家們使用“紅移”一詞來描述天體的距離,簡單的說,就是描述光束從天體發出之後在空間中經歷了多大程度的膨脹拉伸。一個天體的距離越遠,當然它在傳播的過程中光波波長被拉伸的幅度越大,光線也就越紅。

如果使用這種描述方法,那麼你可以說這些遙遠的星系的距離大約是紅移值Z=7。9,天文學家們立刻就會明白你所說的距離尺度。[page]

3 最遙遠的天體

宇宙有多大,宇宙外面是什麼

最遙遠的天體最遙遠的天體

這張影象中間部位那個不太顯眼的紅色模糊光點事實上是一個星系,這是人類迄今所觀測到的最遙遠天體。美國宇航局哈勃空間望遠鏡拍攝了這張照片,這一星系存在的時期距離宇宙大爆炸僅有4。8億年。

這一星系的紅移值約為10,這相當於距離地球315億光年。看起來這一星系似乎非常孤單,在它的周圍沒有發現與它同時期的星系存在。這和大爆炸之後大約6。5億年時的情景形成鮮明對比,在那一時期,天文學家們已經找到大約60個星系。這說明儘管這短短2億年對於宇宙而言僅僅是一眨眼的功夫,但是正是在這一短暫的時期內,小型星系大量聚合形成了大型的星系。

但是這裡需要指出的是,天文學家們目前尚未能完全確認這一天體的距離數值,這也就意味著其實際距離可能要比現在所認為的更近。在美國宇航局的下一代詹姆斯·韋伯空間望遠鏡發射升空以替代哈勃望遠鏡之前,科學家們都將不得不在資料不足的情況下進行估算。[page]

4 最遙遠的距離

宇宙有多大,宇宙外面是什麼

最遙遠的距離最遙遠的距離

天文學家能夠觀測到的最遙遠的光線名為“宇宙微波背景輻射”(CMB)。這是抵達地球的最古老的光子,它們幾乎誕生於宇宙大爆炸發生的時刻。在大爆炸發生後的短時間內,宇宙非常小,因此相當擁擠,物質太過稠密,以至於光線無法長距離傳播。

但在宇宙誕生之後大約38萬年之後,宇宙已經變得足夠大,光線第一次可以自由地傳播。這時發出的光是我們今天所能觀測到的最古老的光線,是宇宙的第一縷曙光;它存在於宇宙的每一個方向,無論你把望遠鏡指向哪個方向,都可以觀測到它的存在。宇宙微波背景輻射就像一堵牆,我們最遠也只能看到牆這一側的風景,但是卻絕無辦法穿牆而過。

那麼這些最初的宇宙之光怎麼變成微波了呢?這還是因為宇宙的膨脹。隨著宇宙的膨脹,當時發出的光波波長被逐漸拉長,經歷如此久遠的時間(137億年),它們的波長已經被拉伸到了不可思議的程度。隨著宇宙膨脹冷卻,現在這一輻射的剩餘溫度大約僅有-270攝氏度,也就是著名的3K背景輻射。這種輻射的分佈顯示出驚人地各向同性,各處的差異小於10萬分之一。

而如果有朝一日人類終於能夠製造出高靈敏度的中微子探測器,那麼我們將終於可以突破宇宙微波背景輻射設定的那堵牆,而看到其背後中微子出現時的情景,即所謂的“宇宙中微子背景”。和光子不同,對中微子而言,一般意義上的物質幾乎是透明的,它們可以輕而易舉地穿過地球,穿過太陽,甚至穿過整個宇宙。正是因為這一特徵,一旦我們能夠解碼中微子中攜帶的資訊,我們將能回溯到宇宙大爆炸之後僅數秒時的情景。[page]

5 星系蝴蝶圖

宇宙有多大,宇宙外面是什麼

星系蝴蝶圖星系蝴蝶圖

天文學家們向宇宙張望,他們注意到宇宙中的星系分佈並非呈現隨機狀態,由於引力的作用,星系傾向於相互接近,從而形成規模巨大的聚合體,如星系團,超星系團,大尺度片狀結構乃至所謂的巨壁。

天文學家們開始著手紀錄這些星系在三維空間中的位置,他們很快成功地製作出較近距離範圍內星系的三維分佈圖,這是一項令人驚歎的成就。大部分此類巡天觀察都將注意力集中在距離地球70億光年之內的範圍,但他們在此過程中也發現了許多類星體,這是宇宙中亮度驚人的奇特天體,來自早期宇宙,其距離可能是70億光年範圍的4倍以上。

在全部這些努力中,斯隆數字巡天(SDSS)可能算是規模最大的一個。參與這一專案的天文學家們目前已經基本完成對1/3天空的巡天觀察,並在此過程中記錄下超過5億個天體的精確位置資訊。而本文此處的配圖則來自另一項巡天計劃:6dF星系巡天,這是目前規模位居第三的巡天專案。這張影象中之所以會缺失很多地方,是因為銀河系的阻擋,很多天區我們都無法進行觀測。[page]

6 鄰近的超星系團

宇宙有多大,宇宙外面是什麼

鄰近的超星系團鄰近的超星系團

在距離地球比較近的空間內,天文學家們的瞭解相對而言就會多一些。我們現在知道在距離地球約10億光年的距離記憶體在一個超星系團的海洋。這些是被引力作用聚集在一起的大量成員星系。

我們的銀河系本身是室女座超星系團的成員,這個超星系團正位於這張影象中中央位置。在這個巨大的超星系團結構中,我們的銀河系毫無特別之處,它只是位於一隅之地的普通成員星系而已。在這一宏偉結構中佔據統治地位的是室女座星系團,這是一個由超過1300個成員星系組成的龐大集團,其直徑超過5400萬光年。

另一個超星系團很值得關注,那就是后髮座超星系團,因為它的位置恰好位於北方巨壁(Northern Great Wall)的中心位置。北方巨壁是一個大到令人難以想象的巨型結構,其直徑約有5億光年,寬度約3億光年。我們星系“附近”最大的超星系團是時鐘座超星系團,其直徑超過5億光年。[page]

7 暗物質和暗能量

宇宙有多大,宇宙外面是什麼

暗物質和暗能量暗物質和暗能量

這個宇宙另外一件令人吃驚的事實是:佔據宇宙大部分的成分我們卻完全看不到。暗物質是一種神秘的存在,科學家們認為它們遍佈宇宙各處,但是我們卻看不到也摸不著。它們和光以及任何種類的電磁波都不發生作用,而這正是人類賴以探測宇宙的基礎工具。不過它會產生引力,透過它對周遭空間施加的引力效應,科學家們能夠感受到它們的存在。

是的,我們能夠感覺到暗物質確實存在。比如我們所在的室女座超星系團大約擁有10的15次方倍太陽質量,但是整個超星系團的光度卻僅有太陽的3萬億倍。這就意味著室女座超星系團的光度相比其質量所應當擁有的光度小了約300倍。這樣的事實是難以解釋的,但是如果考慮到這其中遍佈大量擁有質量但卻不發光的暗物質,一切也就不奇怪了。

事實上,根據計算結果,宇宙中的暗物質含量是我們平常所見的普通物質的5倍。但是暗物質儘管強大,卻仍然不足以統治宇宙。真正支配著我們這個宇宙的力量來自另一種神秘物質:暗能量。普通物質和暗物質有一個共同點,那就是它們都擁有質量,並向周圍空間施加引力影響,換句話說,它們的作用是讓物質聚攏,讓宇宙減速膨脹甚至最終收縮。然而,當科學家們觀測宇宙,試圖分辨出宇宙究竟是在減速膨脹還是在收縮時,他們驚駭地發現事實完全出乎他們的預料——宇宙根本沒有收縮或減速,它正在加速膨脹!毫無疑問,存在一種未知的強大到異乎尋常的力量,它不但獨力抵抗了整個宇宙中所有普通物質和暗物質產生的引力作用,甚至還推動整個宇宙加速膨脹。對於暗能量的發現最近剛剛被授予了今年的諾貝爾物理學獎,但是儘管有了這樣的巨大進展,科學家們對於究竟什麼是暗能量卻依舊毫無頭緒,一無所知。現在有關這一課題的理論幾乎就相當於“虛位以待”,等待著未來出現一個更加完美的理論能摘取成功解釋暗能量本質的桂冠。[page]

8 宇宙之網

宇宙有多大,宇宙外面是什麼

宇宙之網宇宙之網

星系巡天的結果顯示我們的宇宙似乎顯示一種“泡沫網狀”結構。幾乎所有的星系都分佈在狹窄的“纖維帶”上,而在它們的中間則是巨大的空洞,天文學上稱為“巨洞”。這些巨洞的體積巨大,有些直徑可達3億光年,其中幾乎空無一物。但是這樣說並不正確,因為儘管我們看上去那裡確實是什麼也沒有,但實際上這裡充斥著暗物質。

這裡這張圖是一份計算機模擬結果,它顯示我們的宇宙呈現一種纖維網狀結構,其中分佈著節點,纖維帶和層。這種複雜結構的起源來自宇宙微波背景輻射中微小的漣漪,這是其中密度微小變化的體現。隨著宇宙膨脹,這些微小的高密度區去逐漸吸引更多的物質向其聚集,這種效應持續上百億年,其結果是驚人的——它造就了我們今天所見的宇宙。[page]

9 檢驗宇宙模型

宇宙有多大,宇宙外面是什麼

檢驗宇宙模型檢驗宇宙模型

2005年,一個國際天文學家小組試圖檢驗現有的宇宙學理論是否正確。他們進行了一項名為“千年執行”的模擬計劃,在計算機中他們模擬100億個粒子在一個邊長為20億光年的立方體空間中,按照我們現有的理論去作用於它們,是否能得到某種我們所預期的結果。

這項模擬實驗中考慮了普通物質,暗物質和暗能量因素,成功地再現出宇宙從混沌逐漸顯現類似於我們今天所觀察到的宇宙大尺度結構。在模擬執行的過程中,研究人員們目睹了宇宙中大質量黑洞的出現,強大的類星體發出劇烈的輻射,模擬的結果中還出現了大約2000萬個星系。正如文中此處展示的那樣,研究人員們發現模擬的結果產生出一個和我們所觀察到的現實宇宙非常相似的狀態。

宇宙有多大,宇宙外面是什麼我這悲哀的人生 2013-05-18

從最新的觀測資料看,人們已觀測到的離我們最遠的星系是137億光年。也就是說,如果有一束光以每秒30萬千米的速度從該星系發出,那麼要經過137億年才能到達地球。這137億光年的距離便是我們今天所知道的宇宙的範圍。再說得明確一些,我們今天所知道的宇宙範圍,或者說大小,是一個以地球為中心,以137億光年的距離為半徑的球形空間。當然,地球並不真的是什麼宇宙的中心,宇宙也未必是一個球體,只是限於我們目前的觀測能力,我們只能瞭解到這一程度。

所以宇宙沒有邊界,以我們的觀測能力決定了我們能看多遠,我們的觀測能力在發展,觀測的範圍也在變大。不過按照宇宙大爆炸的理論,宇宙還在不斷的擴大。

茫茫宇宙無邊無際,其深邃讓人難以想象, 1999年4月,美國紐約州立大學的一個天文研究小組,利用“哈勃”太空望遠鏡的巨大威力。經過2年多時間的周密觀測,並用電子計算機進行科學處理,剔除了分佈在該方向上交迭在一起的400多個天體影象,終於“請”出了一個最古老星系,從它退行膨脹的速度高達光速的96。66%推算,它應處於137億光年的宇宙邊緣!

137億光年的距離實在難以比喻,連最快的光也要疾行137億年才能到達。 由此可見,這個最遠的星系也是宇宙大爆炸後不久的天體,是極其珍貴的最古老的“宇宙化石”,因為在探索宇宙起源、演化,宇宙早期歷史將有無可估量的意義。

宇宙不是無限的,或者說,我們所居住的這個狹義的宇宙並不是無限的。它的邊界在哪裡、以何形式存在現在尚在爭論,但“我們的宇宙”不是無限的,這個觀點基本已經得到了認同。

現在一個觀點認為,在宇宙的邊緣時空是扭曲的,就是說你能無限接近它,但無法到達它。

至於廣義的宇宙,即“我們的宇宙”之外的宇宙是否無限,這個就說不清了,正如無法對夏蟲語冰,現在的人類科技對此還毫無認識,現在的研究尚未突破我們的宇宙這個範圍。

宇宙是無限的,但是是有界的。霍金理解的宇宙就象一個籃球一樣,你在球面上無法找到起點和終點,但它卻是有界的。就象很多天文學的書籍裡面都有介紹,如果看看斯蒂芬。霍金的著作會明白得更多。

或者從大爆炸理論裡可以得到,我們的宇宙仍然在膨脹之中,星系彼此仍然在退行,也就是我們所認識的宇宙仍然在膨脹,在延伸,在擴大,但還沒有到它的盡頭。

宇宙有多大,宇宙外面是什麼xyqy617 2013-05-18

這個問題估計全世界都沒有人能夠回答你,宇宙有多大至今也沒有人知道,也不是我們能夠想象得到的。

宇宙形狀也是未知的,人類在大膽想象。有的人說宇宙其實是一個類似人的這樣一種生物的一個小細胞,而也有人說宇宙是一種擁有比人類更高智慧的電腦生物所製造出來的一個程式或是一個小小的原件。還有人猜想,宇宙其實就是一個電子,宇宙是一個比電子更小得多的東西,宇宙根本就不存在,或者宇宙是無形的。也有人猜想,我們的宇宙生活在一個大的空間裡,叫做“超空間”。在超空間裡,有很多宇宙,而超空間的能量是守恆的,而且非常巨大。每當一個宇宙的能量上升時,他鄰近的宇宙的能量就會下降。

宇宙大爆炸(5張)

每一個宇宙的每個地方,能量都不一樣,有正能量,也有暗能量,也有沒有能量的地方。

目前比較流行的是大爆炸理論。根據大爆炸理論,宇宙的發展史可表示為一個右端開放的封閉曲面體,如右圖。左端中心為爆炸奇點,向右延伸137億光年。從左往右依次為:奇點、40萬年的初期膨脹、近4億年的黑暗期、出現恆星、星系和行星發展期、含有暗物質與暗能量的加速膨脹期。

宇宙有多大,宇宙外面是什麼zgrbkr 2017-12-07

一、宇宙外面是什麼

“宇宙到底是什麼樣子?”目前尚無定論。值得一提的是史蒂芬·霍金的觀點比較讓人容易接受:宇宙有限而無界,只不過比地球多了幾維。比如,我們的地球就是有限而無界的。在地球上,無論從南極走到北極,還是從北極走到南極,你始終不可能找到地球的邊界,但你不能由此認為地球是無限的。實際上,我們都知道地球是有限的。地球如此,宇宙亦是如此。

怎麼理解宇宙比地球多了幾維呢?舉個例子:一個小球沿地面滾動並掉進了一個小洞中,在我們看來,小球是存在的,它還在洞裡面,因為我們人類是“三維”的;而對於一個動物來說,它得出的結論就會是:小球已經不存在了!它消失了。為什麼會得出這樣的結論呢?因為它生活在“二維”世界裡,對“三維”事件是無法清楚理解的。同樣的道理,我們人類生活在“三維”世界裡,對於比我們多幾維的宇宙,也是很難理解清楚的。這也正是對於“宇宙是什麼樣子”這個問題無法解釋清楚的原因。

1、均勻的宇宙

長期以來,人們相信地球是宇宙的中心。哥白尼把這個觀點顛倒了過來,他認為太陽才是宇宙的中心。地球和其他行星都圍繞著太陽轉動,恆星則鑲嵌在天球的最外層上。布魯諾進一步認為,宇宙沒有中心,恆星都是遙遠的太陽。

無論是托勒密的地心說還是哥白尼的日心說,都認為宇宙是有限的。教會支援宇宙有限的論點。但是,布魯諾居然敢說宇宙。是無限的,從而挑起了宇宙究竟有限還是無限的長期論戰。這場論戰並沒有因為教會燒死布魯諾而停止下來。主張宇宙有限的人說:“宇宙怎麼可能是無限的呢?”這個問題確實不容易說清楚。主張宇宙無限的人則反問:“宇宙怎麼可能是有限的呢?”這個問題同樣也不好回答。

隨著天文觀測技術的發展,人們看到,確實像布魯諾所說的那樣,恆星是遙遠的太陽。人們還進一步認識到,銀河是由無數個太陽系組成的大星系,我們的太陽系處在銀河系的邊緣,圍繞著銀河系的中心旋轉,轉速大約每秒250千米,圍繞銀心轉一圈約需2。5億年。太陽系的直徑充其量約1光年,而銀河系的直徑則高達10萬光年。銀河系由1000多億顆恆星組成,太陽系在銀河系中的地位,真像一粒砂子處在北京城中。

後來又發現,我們的銀河系還與其他銀河系組成更大的星系團,星系團的直徑約為107光年(1000萬光年)。目前,望遠鏡觀測距離已達100億光年以上,在所見的範圍內,有無數的星系團存在,這些星系團不再組成更大的團,而是均勻各向同性地分佈著。這就是說,在10的7次方光年的尺度以下,物質是成團分佈的。衛星繞著行星轉動,行星、彗星則繞著恆星轉動,形成一個個太陽系。這些太陽系分別由一個、兩個、三個或更多個太陽以及它們的行星組成。有兩個太陽的稱為雙星系,有三個以上太陽的稱為聚星系。成千億個太陽系聚集在一起,形成銀河系,組成銀河系的恆星(太陽系)都圍繞著共同的重心——銀心轉動。

無數的銀河系組成星系團,團中的各銀河系同樣也圍繞它們共同的重心轉動。但是,星系團之間,不再有成團結構。各個星系團均勻地分佈著,無規則地運動著。從我們地球上往四面八方看,情況都差不多。粗略地說,星系固有點像容器中的氣體分子,均勻分佈著,做著無規則運動。這就是說,在10的8次方光年(一億光年)的尺度以上,宇宙中物質的分佈不再是成團的,而是均勻分佈的。由於光的傳播需要時間,我們看到的距離我們一億光年的星系,實際上是那個星系一億年以前的樣子。所以,我們用望遠鏡看到的,不僅是空間距離遙遠的星系,而且是它們的過去。從望遠鏡看來,不管多遠距離的星系團,都均勻各向同性地分佈著。

因而我們可以認為,宇觀尺度上(10的5次方光年以上)物質分佈的均勻狀態,不是現在才有的,而是早已如此。

於是,天體物理學家提出一條規律,即所謂宇宙學原理。這條原理說,在宇觀尺度上,三維空間在任何時刻都是均勻各向同性的。現在看來,宇宙學原理是對的。所有的星系都差不多,都有相似的演化歷程。因此我們用望遠鏡看到的遙遠星系,既是它們過去的形象,也是我們星系過去的形象。望遠鏡不僅在看空間,而且在看時間,在看我們的歷史。

2、有限而無邊的宇宙

愛因斯坦發表廣義相對論後,考慮到萬有引力比電磁力弱得多,不可能在分子、原子、原子核等研究中產生重要的影響,因而他把注意力放在了天體物理上。他認為,宇宙才是廣義相對論大有用武之地的領域。

愛因斯坦1915年發表廣義相對論,1917年就提出一個建立在廣義相對論基礎上的宇宙模型。這是一個人們完全意想不到的模型。在這個模型中,宇宙的三維空間是有限無邊的,而且不隨時間變化。以往人們認為,有限就是有邊,無限就是無邊。愛因斯坦把有限和有邊這兩個概念區分開來。

一個長方形的桌面,有確定的長和寬,也有確定的面積,因而大小是有限的。同時它有明顯的四條邊,因此是有邊的。如果有一個小甲蟲在它上面爬,無論朝哪個方向爬,都會很快到達桌面的邊緣。所以桌面是有限有邊的二維空間。如果桌面向四面八方無限伸展,成為歐氏幾何中的平面,那麼,這個歐氏平面是無限無邊的二維空間。

我們再看一個籃球的表面,如果籃球的半徑為r,那麼球面的面積是4πr的2次方,大小是有限的。但是,這個二維球面是無邊的。假如有一個小甲蟲在它上面爬,永遠也不會走到盡頭。所以,籃球面是一個有限無邊的二維空間。

按照宇宙學原理,在宇觀尺度上,三維空間是均勻各向同性的。愛因斯坦認為,這樣的三維空間必定是常曲率空間,也就是說空間各點的彎曲程度應該相同,即應該有相同的曲率。由於有物質存在,四維時空應該是彎曲的。三維空間也應是彎的而不應是平的。愛因斯坦覺得,這樣的宇宙很可能是三維超球面。三維超球面不是通常的球體,而是二維球面的推廣。通常的球體是有限有邊的,體積是4/3πr的3次方,它的邊就是二維球面。三維超球面是有限無邊的,生活在其中的三維生物(例如我們人類就是有長、寬、高的三維生物),無論朝哪個方向前進均碰不到邊。假如它一直朝北走,最終會從南邊走回來。

宇宙學原理還認為,三維空間的均勻各向同性是在任何時刻都保持的。愛因斯坦覺得其中最簡單階情況就是靜態宇宙,也就是說,不隨時間變化的宇宙。這樣的宇宙只要在某一時刻均勻各向同性,就永遠保持均勻各向同性。

愛因斯坦試圖在三維空間均勻各向同性、且不隨時間變化的假定下,救解廣義相對論的場方程。場方程非常複雜,而且需要知道初始條件(宇宙最初的情況)和邊界條件(宇宙邊緣處的情況)才能求解。本來,解這樣的方程是十分困難的事情,但是愛因斯坦非常聰明,他設想宇宙是有限無邊的,沒有邊自然就不需要邊界條件。他又設想宇宙是靜態的,現在和過去都一樣,初始條件也就不需要了。再加上對稱性的限制(要求三維空間均勻各向同性),場方程就變得好解多了。但還是得不出結果。反覆思考後,愛因斯坦終於明白了求不出解的原因:廣義相對論可以看作萬有引力定律的推廣,只包含“吸引效應”不包含“排斥效應”。而維持一個不隨時間變化的宇宙,必須有排斥效應與吸引效應相平衡才行。這就是說,從廣義相對論場方程不可能得出“靜態”宇宙。要想得出靜態宇宙,必須修改場方程。於是他在方程中增加了一個“排斥項”,叫做宇宙項。這樣,愛因斯坦終於計算出了一個靜態的、均勻各向同性的、有限無邊的宇宙模型。一時間大家非常興奮,科學終於告訴我們,宇宙是不隨時間變化的、是有限無邊的。看來,關於宇宙有限還是無限的爭論似乎可以畫上一個句號了。

宇宙有多大,宇宙外面是什麼網友b91d9e9 2019-02-08

廣義的宇宙定義是萬物的總稱,是時間和空間的統一。狹義的宇宙定義是地球大氣層以外的空間和物質。“宇宙航行”的“宇宙”定義就是狹義的“宇宙”的定義,宇宙航行意思就是在大氣層以外的空間航行。

而宇宙本質,目前大致有三種概念。

唯心者的意識宇宙,唯物者的物質宇宙,和法則宇宙。

古代對宇宙的定義,有西漢的《淮南子》:“往古來今謂之宙,四方上下謂之宇”。

透過宇宙微波背景輻射的觀測發現我們的宇宙已經膨脹了138。2億年,最新的研究認為宇宙的直徑可達到1860億光年,甚至更大。

人類所觀察到的部分宇宙的物件大約是由4。9%的普通物質(構成恆星、行星、氣體和塵埃的物質)或“重子”,26。8%的暗物質和68。3%的暗能量構成。重子物質構成星系際的“蛛網”。

在宇宙中,地球是目前人類所知唯一一顆有生命存在的星球。

宇宙大爆炸是描述宇宙誕生初始條件及其後續演化的宇宙學模型,這一模型得到了當今科學研究和觀測最廣泛且最精確的支援。宇宙學家通常所指的大爆炸觀點為:宇宙是在過去有限的時間之前,由一個密度極大且溫度極高的太初狀態演變而來的,並經過不斷的膨脹到達今天的狀態。

暗物質和暗能量分別透過對普通物質產生的引力作用和推動宇宙做加速膨脹而表明它們的存在。如果暗能量不存在,那麼物質間的萬有引力作用就會減慢宇宙的膨脹,但是天文觀測表明我們的宇宙在做加速膨脹運動。宇宙由一切天體組成

Top