核裂變和核聚變要什麼條件?

  • 作者:由 匿名使用者 發表于 動漫
  • 2021-10-18

核裂變和核聚變要什麼條件? 匿名使用者 1級 2018-07-11 回答

產生核聚變需要的條件非常苛刻。拿太陽來說,其中心溫度達到1500萬度,另外還有巨大的壓力能使核聚變正常發生。而地球上沒辦法得到那麼大的壓力,只能透過提高溫度來彌補,不過這樣一來溫度要到上億度才行。核聚變如此高的溫度沒有一種固體物質能夠承受,只能靠強大的磁場來約束。高溫超導體如果能真正實用化的話就可以解決磁場的來源,但體積難免做得巨大了些。此外這麼高的溫度,核反應點火也成為問題,這讓我想到了大天使號上的核反應堆是鐳射脈衝核反應堆(具有大型的鐳射發射器)。這個正是現在的科學家想出來的一種解決之道。

核裂變和核聚變要什麼條件? 匿名使用者 1級 2018-07-12 回答

核裂變:

冰受熱變成水是一種物理變化,氫氣和氧氣反應變成水是一種化學變化,但是在這些變化中組成水的氫原子和氧原子的原子核都沒有發生變化。實際上原子核也是能變化的,目前人們已經知道原子核可以發生兩種變化:核裂變和核聚變。

核裂變是一個原子核分裂成幾個原子核的變化。只有一些質量非常大的原子核像鈾(yóu)、釷(tǔ)等才能發生核裂變。這些原子的原子核在吸收一箇中子以後會分裂成兩個或更多個質量較小的原子核,同時放出二個到三個中子和很大的能量,又能使別的原子核接著發生核裂變……,使過程持續進行下去,這種過程稱作鏈式反應。原子核在發生核裂變時,釋放出巨大的能量稱為原子核能,俗稱原子能。1克鈾235完全發生核裂變後放出的能量相當於燃燒2。5噸煤所產生的能量。

核裂變是在1938年發現的,由於當時第二次世界大戰的需要,核裂變被首先用於製造威力巨大的原子武器——原子彈。原子彈的巨大威力就是來自核裂變產生的巨大能量。目前,人們除了將核裂變用於製造原子彈外,更努力研究利用核裂變產生的巨大能量為人類造福,讓核裂變始終在人們的控制下進行,核電站就是這樣的裝置。

核聚變:

比原子彈威力更大的核武器—氫彈,就是利用核聚變來發揮作用的。核聚變的

過程與核裂變相反,是幾個原子核聚合成一個原子核的過程。只有較輕的原子核才

能發生核聚變,比如氫的同位素氘(dao)、氚(chuan)等。核聚變也會放出巨大的能

量,而且比核裂變放出的能量更大。太陽內部連續進行著氫聚變成氦過程,它的光

和熱就是由核聚變產生的。

核聚變能釋放出巨大的能量,但目前人們只能在氫彈爆炸的一瞬間實現非受控

的人工核聚變。而要利用人工核聚變產生的巨大能量為人類服務,就必須使核聚變

在人們的控制下進行,這就是受控核聚變。

實現受控核聚變具有極其誘人的前景。不僅因為核聚變能放出巨大的能量,而

且由於核聚變所需的原料——氫的同位素氘可以從海水中提取。經過計算,1升海水

中提取出的氘進行核聚變放出的能量相當於100升汽油燃燒釋放的能量。全世界的海

水幾乎是“取之不盡”的,因此受控核聚變的研究成功將使人類擺脫能源危機的困

擾。

但是人們現在還不能進行受控核聚變,這主要是因為進行核聚變需要的條件非

常苛刻。發生核聚變需要在1億度的高溫下才能進行,因此又叫熱核反應。可以想象,

沒有什麼材料能經受得起1億度的高溫。此外還有許多難以想象的困難需要去克服。

儘管存在著許多困難,人們經過不斷研究已取得了可喜的進展。科學家們設計

了許多巧妙的方法,如用強大的磁場來約束反應,用強大的鐳射來加熱原子等。可

以預計,人們最終將掌握控制核聚變的方法,讓核聚變為人類服務。

核聚變就是小質量的兩個原子合成一個比較大的原子

核裂變就是一個大質量的原子分裂成兩個比較小的原子

在這個變化過程中都會釋放出巨大的能量,前者釋放的能量更大,

世界上的每一種物質都處於不穩定狀態,有時會分裂或合成,變成另外的物質。物質無論是分裂或合成,都會產生能量。由兩個氫原子合為一個氦原子,就叫核聚變,太陽就是依此而釋放出巨大的能量。大家熟悉的原子彈則是用裂變原理造成的,目前的核電站也是利用核裂變而發電。

核裂變雖然能產生巨大的能量,但遠遠比不上核聚變,裂變堆的核燃料蘊藏極為有限,不僅產生強大的輻射,傷害人體,而且遺害千年的廢料也很難處理,核聚變的輻射則少得多,核聚變的燃料可以說是取之不盡,用之不竭。

核聚變要在近億度高溫條件下進行,地球上原子彈爆炸時可以達到這個溫度。用核聚變原理造出來的氫彈就是靠先爆發一顆核裂變原子彈而產生的高熱,來觸發核聚變起燃器,使氫彈得以爆炸。但是,用原子彈引發核聚變只能引發氫彈爆炸,卻不適用於核聚變發電,因為電廠不需要一次驚人的爆炸力,而需要緩緩釋放的電能。

關於核聚變的“點火”問題,鐳射技術的發展,使可控核聚變的“點火”難題有了解決的可能。目前,世界上最大鐳射輸出功率達100萬億瓦,足以“點燃”核聚變。除鐳射外,利用超高額微波加熱法,也可達到“點火”溫度。世界上不少國家都在積極研究受控熱核反應的理論和技術,美國、俄羅斯、日本和西歐國家的研究已經取得了可喜的進展。

1991年11月9日17時21分,物理學家們用歐洲聯合環形聚變反應堆在1。8秒種裡再造了“太陽”,首次實現了核聚變反應,溫度高達2×108℃,為太陽內部溫度的10倍,產生了近2兆瓦的電能,從而使人類多年來對於獲得充足而無汙染的核能的科學夢想向現實大大靠近了一步。

我國自行設計和研製的最大的受控核聚變實驗裝置“中國環流器一號”,已在四川省樂山地區建成,並於1984年9月順利啟動,它標誌著我國研究受控核聚變的實驗手段,又有了新的發展和提高,並將為人類探求新能源事業做出貢獻。美中兩國科學家分別於1993年和1994年在這個領域的研究和實驗中取得新成果。

目前,美、英、俄、德、法、日等國都在競相開發核聚變發電廠,科學家們估計,到2025年以後,核聚變發電廠才有可能投入商業運營。2050年前後,受控核聚變發電將廣泛造福人類。

核聚變反應燃料是氫的同位素氘、氚及惰性氣體3He(氦-3),氘和氚在地球上蘊藏極其豐富,據測,每1升海水中含30毫克氘,而30毫克氘聚變產生的能量相當於300升汽油,這就是說,1升海水可產生相當於300升汽油的能量。一座100萬千瓦的核聚變電站,每年耗氘量只需304千克。

氘的發熱量相當於同等煤的2000萬倍,天然存在於海水中的氘有45億噸,把海水透過核聚變轉化為能源,按目前世界能源消耗水平,可供人類用上億年。鋰是核聚變實現純氘反應的過渡性輔助“燃料”,地球上的鋰足夠用1萬年~2萬年,我國羌塘高原鋰礦儲量佔世界的一半。

科學家們發現,以3He為燃料的核聚變反應比氘氚聚變更清潔,效益更高,而且與放射性的氘氚不同的是3He是一種惰性氣體,操作安全。獲得過諾貝爾獎金的科學家博格、美國總統軍備控制顧問保羅·尼采1991年曾撰文說,沒有其它能源能像3He那樣幾乎無汙染。

下世紀初,人類將在月球上開採地球上不存在的3He礦藏,用於代替氚,從而使目前世界各地建造的實驗性聚變反應可以攻克關鍵性的難關,使其走上商用成為可能。地球上並不存在天然的3He,作為核武器研究的副產品,美國每年生產大約20千克,但一臺實驗性反應堆就需要至少40千克。月球上的鈦礦中蘊藏著豐富的3He資源。

月球表面的鈦金屬能吸收太陽風颳來的3He粒子。據估計,月球誕生的40億年間,鈦礦吸收了大約100萬噸3He,其能量相當於地球上有史以來所有開發礦物燃料的10倍以上。1994年日本宣佈了去月球開發3He的計劃專案,日本比美國在3He聚變專案上的投資要多出100倍。

1986年起美國威斯康星州的麥迪遜就成了3He研究中心。只要從月球上運回25噸3He,就可滿足美國大約一年的能源需要。目前,全球每年的能源消費大約1000萬兆瓦,聯合國1990年公佈的數字,到2050年時將會猛增至3000萬兆瓦,每年從月球上開採1500噸3He,就能滿足世界範圍內對能源的需求。

按上述開採量推算,月球上的3He至少可供地球上使用700年。但木星和土星上的3He幾乎是取之不盡、用之不竭的。綜上所述,可以看出,核聚變為人類擺脫能源危機展現了美好的前景。

核裂變和核聚變

核能是能源家族的新成員,它包括裂變能和聚變能兩種主要形式。裂變能是重金屬元素的質子透過裂變而釋放的巨大能量,目前已經實現商用化。因為裂變需要的鈾等重金屬元素在地球上含量稀少,而且常規裂變反應堆會產生長壽命放射性較強的核廢料,這些因素限制了裂變能的發展。另一種核能形式是目前尚未實現商用化的聚變能。

核聚變是兩個較輕的原子核聚合為一個較重的原子核,並釋放出能量的過程。自然界中最容易實現的聚變反應是氫的同位素??氘與氚的聚變,這種反應在太陽上已經持續了150億年。氘在地球的海水中藏量豐富,多達40萬億噸,如果全部用於聚變反應,釋放出的能量足夠人類使用幾百億年,而且反應產物是無放射性汙染的氦。另外,由於核聚變需要極高溫度,一旦某一環節出現問題,燃料溫度下降,聚變反應就會自動中止。也就是說,聚變堆是次臨界堆,絕對不會發生類似前蘇聯切爾諾貝利核(裂變)電站的事故,它是安全的。因此,聚變能是一種無限的、清潔的、安全的新能源。這就是為什麼世界各國,尤其是發達國家不遺餘力,競相研究、開發聚變能的原因所在。

其實,人類已經實現了氘氚核聚變??氫彈暴炸,但那種不可控制的瞬間能量釋放只會給人類帶來災難,人類需要的是實現受控核聚變,以解決能源危機。聚變的第一步是要使燃料處於等離子體態,也即進入物質第四態。等離子體是一種充分電離的、整體呈電中性的氣體。在等離子體中,由於高溫,電子已獲得足夠的能量擺脫原子核的束縛,原子核完全裸露,為核子的碰撞準備了條件。當等離子體的溫度達到幾千萬度甚至幾億度時,原子核就可以克服斥力聚合在一起,如果同時還有足夠的密度和足夠長的熱能約束時間,這種聚變反應就可以穩定地持續進行。等離子體的溫度、密度和熱能約束時間三者乘積稱為“聚變三重積”,當它達到1022時,聚變反應輸出的功率等於為驅動聚變反應而輸入的功率,必須超過這一基本值,聚變反應才能自持進行。由於三重積的苛刻要求,受控核聚變的實現極其艱難,真正建造商用聚變堆要等到21世紀中葉。作為21世紀理想的換代新能源,核聚變的研究和發展對中國和亞洲等能源需求巨大、化石燃料資源不足的發展中國家和地區有特別重要的戰略意義。

受控熱核聚變能的研究分慣性約束和磁約束兩種途徑。慣性約束是利用超高強度的鐳射在極短的時間內輻照靶板來產生聚變。磁約束是利用強磁場可以很好地約束帶電粒子這個特性,構造一個特殊的磁容器,建成聚變反應堆,在其中將聚變材料加熱至數億攝氏度高溫,實現聚變反應。20世紀下半葉,聚變能的研究取得了重大的進展,託卡馬克型別的磁約束研究領先於其他途徑。

受控熱核聚變能研究的一次重大突破,就是將超導技術成功地應用於產生託卡馬克強磁場的線圈上,建成了超導託卡馬克,使得磁約束位形的連續穩態執行成為現實。超導託卡馬克是公認的探索、解決未來具有超導堆芯的聚變反應堆工程及物理問題的最有效的途徑。目前,全世界僅有俄、日、法、中四國擁有超導託卡馬克。法國的超導託卡馬克Tore-supra體積是HT-7的17。5倍,它是世界上第一個真正實現高參數準穩態執行的裝置,在放電時間長達120秒條件下,等離子體溫度為兩千萬度,中心密度每立方米1。5x10的19次方,放電時間是熱能約束時間的數百倍。

重水是什麼?

水在電流的作用下,能分解成氫氣和氧氣。但是在電解水的過程中,有一個奇怪的現象,就是電解到最後,總剩下少量的水,無論怎樣都不能再分解了。直到1932年,美國物理學家尤雷用光譜分析發現了重氫,人們才搞清楚,這難以電解的水,原來是由重氫和氧組成的。

普通的氫原子也叫氕,它的原子核就含一個質子,無中子,相對原子質量為1。氕與氧結合,成為普通的水,它的相對分子質量為18。重氫又叫氘,這個字在希臘語裡是“第二”的意思。氘的原子核比普通的氫原子核多一箇中子,故相對原子質量為2。氘與氧的化合物也是水,不過它的相對分子質量為20,比普通水重百分之十,所以叫重水。

為什麼有那麼多國家的科學家這樣重視重水呢?因為重水有一個重要的特性,它在原子核反應堆裡能降低中子的速度,又幾乎不吸收中子,是最好的中子減速劑。只有經過減速以後的中子,才能有效地使鈾235發生裂變,促使核裂變反應能夠不斷地進行。當時,有些國家在設法制造原子彈,沒有中子減速劑就不能進行原子裂變的試驗。

可是,製取重水又非常困難,因為它在水中的含量只佔萬分之一點五,平均大約每七噸水裡,才有一千克的重水。要是採用電解的方法制取這一千克重水,就得消耗六萬度的電,比熔鍊一噸鋁還大三倍。難怪重水這麼寶貴,價值千金!

雖然重水總混雜在普通的水中,它們像一對孿生兄弟,很難分開,可是彼此的性質卻又相差很遠。

比如:普通水是0℃結冰,重水在3.82℃時變成冰;普通水在100℃沸騰,而重水的沸點是101.42℃。利用它們的沸點不同的特性,我們也可以用反覆蒸餾的方法來製取重水。

在重水裡,物質的溶解度比在普通水裡小得多,許多化學反應的速度也要慢得多。聲音在重水裡的傳播速度也比在普通水裡要慢一些。

核裂變和核聚變要什麼條件? 匿名使用者 1級 2018-07-12 回答

簡單回答

核裂變

自身性質 只要有足夠大能夠保證中子在鈾塊中穿過可以被虜獲就可以

外界因素 無

核聚變

自身性質 只要有足夠於聚變的元素的物質的量就可以

外界因素 和核裂變一樣 也需要溫度

核裂變和核聚變要什麼條件? 匿名使用者 1級 2018-07-12 回答

有財,有人

Top